

Phase I Results:

Large Pilot Scale Testing of Linde/BASF Post-Combustion CO₂ Capture Technology at the Abbott Coal-Fired Power Plant

DOE/NETL Funding Award DE-FE0026588

Presenter: Kevin C OBrien, PhD Director, Illinois Sustainable Technology Center Prairie Research Institute University of Illinois, Urbana-Champaign

2016 NETL CO2 Capture Technology Project Review Meeting August 08 - 12, 2016 Pittsburgh, PA

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Funding, Objectives, Tasks, Timelines

PROJECT OVERVIEW

Prairie Research Institute (PRI) at University of Illinois Illinois-focused Resource Research and Service

Addressing societal challenges that impact Illinois and the global community

Linde

PRAIRIE RESEARCH INSTITUTE ENERG

PRI : Skilled at Leveraging State Funds

History of executing large projects for the state and region

Linde

PRAIRIE RESEARCH INSTITUTE

Advisory Board for Capture Project and Center

UTCH

Key partnerships regionally and internationally

中石化石油工程设计有限公司 Sinopec Petroleum Engineering Corporation

Your Touchstone Energy® Partner 🔨

US Army Corps of Engineers. Engineer Research and **Development Center**

LLINOIS GREEN BUSINESS ASSOCIATION

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Center for **Community Adaptation**

Project Performance: Dates and Funding

Financial commitment from all team members

BP1: OCT 1, 2015 TO SEPT 30, 2016

Affiliated Engineers

U.S. DEPARTMENT O

ENERGY

Objectives

- Design and install a carbon capture system of nominal 15 MWe
 - Integrate with the Abbott Power Plant flue gas system
 - Demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity
 - Optimize the process at this scale and to gather performance data to enable a robust design of large commercial size plants
- Provide a guideline for the retrofit of other existing plants within the coal fleet
 - Enable future knowledge sharing with other utilities in order to encourage and facilitate the retrofit process
- Illustrate a path forward for the utilization of the captured CO₂

Successfully evaluated at the 1.5 MWe level at NCCC

TECHNOLOGY DESCRIPTION

BASF OASE® Blue Technology Development

Adopted and Optimized for PCC Applications

Mini plant

- —2001, Ludwigshafen
- Solvent performance verification

Pilot: 0.5MWe

2009, NiederaussemProcess optimization,

Pilot: 1.5 MWe

- -2014, Wilsonville, AL
- Design improvements, emissions confirmation

Large Pilot: 15 MWe

- -2016/20, proposed
- PCC plant cost reduction
- Full value chain

Overview of Capture System for Large Pilot Plant

Technology features

Host Site: Abbott Power Plant

Ideal site for large scale pilot testing of coal and natural gas

- Seven boilers total: three are coal based (Chain-grate stoker design) others natural gas
- Coal side has completely separate treatment system from natural gas side
- For testing will run two coal boilers
- Illinois high sulfur coal is burned
- Electrostatic precipitators and a wet Flue Gas Desulfurizer (FGD) in place
- Tradition of evaluating new emission technologies
- Tradition of showcasing technologies to other power plants and education groups

Major advantage that University owns and operates Host Site

TECHNICAL APPROACH / PROJECT SCOPE

Project Schedule, Tasks, and Milestones Phase 1 effort

Project Milestones and Accomplishments

Budget Period	Task / Subtask	Milestone Description	Planned Completion	Actual Completion	Verification Method	Status / Comments
1	1	Updated Project Management Plan	10/1/2015	10/1/2015	Project Management Plan File	Completed
1	1	Kick-off Meeting	12/30/2015	12/10/2015	Presentation File	Completed
1	2	TEA completed	3/31/2016	3/31/2016	Presentation File	Completed
1	3	EH&S Study Completed	3/31/2016	3/31/2016	Presentation File	Completed
1	4	Technology Gap Analysis Completed	3/31/2016	3/31/2016	Presentation File	Completed
1	5	Phase I Topical Report Completed	3/31/2016	3/31/2016	Presentation File	Completed
1	1	Host Site Agreement Completed	6/30/2016	6/30/2016	Signed Agreement	Completed
1	6	Phase 2 Application Preparation Completed	3/31/2016 6/30/2016	3/31/2016 6/30/2016	Application Document	Completed

Project Success Criteria

Decision Point	Date	Success Criteria
Go / No-Go Phase 2 Application	3/31/2016	Submission of continuation application
Negotiated and completed agreements	06/30/2016	Cost estimates for 15 MWe pilot meets targeted budget for funding and cost share in Phase 2
Go/ No-Go Phase 2 Initiation	10/1/2016	Phase 2 Award and commitment of funds for cost share

Steps in Building a Market for Captured CO₂

Combination of partnerships, technologies, and interest in economic development

- Find a Power Generator willing to host large scale pilot
 - Abbott Power Plant at University of Illinois
 - Traditionally evaluates new technologies and shares with other plants
- Assemble a "bondable" team with a proven capture technology (Phase I)
 - Linde/BASF provides proven technology
 - Linde/BASF; Affiliated Engineers Inc. experienced in large projects
- Obtain financing for project
 - Proposal to DOE for 15 MW large scale capture pilot
- Construct and test a large scale pilot system at the power generator (Phase II)
- Large scale pilot evaluations of technologies for utilization of captured CO₂ (Phase III)
 - Forming Center for CO₂ utilization
 - Capitalizes on 300 Tons/day of CO₂ generated

Phase 1 completed, milestones achieved, prepared for Phase 2

PROGRESS AND CURRENT STATUS

Overview of Phase 2 Project Schedule

More than just a design, build, operate project

- Stakeholder Engagement helps educate , understand market needs, and propagate technology
- Education: workforce development for existing and future operators and engineers
- Demonstrating not only the technology but how to create jobs and drive regional economies

Task 5: Site for Carbon Capture Plant Established and Evaluated

Located close to Abbott Power Plant

Extract flue gas POST CEMS Unit

Task 5: Plot Plan for Capture Plant

160 ft. x 150 ft. footprint

No modifications to existing plant combustion system (i.e. boilers) considered a major risk reduction by Abbott Power Plant

Task 4: Technology Gap Analysis and Risk Mitigation

Technology Gap	Steps to Close Gap
Absorber Column design, size, scale-up	 Apply Linde commercial experience from past column designs Assess low cost column construction Experience from large scale pilot will contribute to knowledge for full scale plant deployments
Flue gas composition variability	 CO2 recycle from stripper to absorber emulates higher CO2 compositions in flue gas Direct contact cooler to manage higher SO2 conc. In flue gas
Load following strategy and response	 Design load-following strategy for capture plant to enable fast response
Aerosol formation and solvent losses/carry-over	 Design, construct, test aerosol control module early in BP2 Measure particles and amine carry-over
Stripper interstage heating and advanced flash stripper	 Reduce reboiler duty by incorporating stripper interstage heating Weigh reduction in energy consumption vs capital costs
Solvent Management	 Assess solvent recycle options Test portable solvent reclaiming system Develop solvent delivery and storage options using BASF's experience in other amine solvent applications
Water & wastewater management	 Evaluate Reverse Osmosis option to treat blowdown water and reuse Evaluate makeup water softening options Evaluate the use of blowdown water from Abbott's cooling towers Evaluate the use of flue gas condensate from DCC as process water

We create chemistry

Linde

PRAIRIE RESEARCH INSTITUTE

Task 3: Environmental Health & Safety Risk Mitigation

Safety & H Risk	Mitigation Approach
 Plant operations safety 	 Applied Linde's comprehensive "Safety by Design" guidelines
	 Safety and operator training
 Safety issues arising from improper 	 Implementation of Linde Gas Standard Requirements
design and operations/ maintenance	 Comprehensive Hazard and Operability study
requirements not identified at design	(HAZOP)
	 Comprehensive Process Safety Reviews (PSR)
	 Safety instrumented systems
	 Flow restriction and safety interlocks
 Process operations safety 	 Automatic safe shutdown capability incorporated in the
	large pilot plant design
	Emergency power supply
	 Multiple eye wash and emergency showers
. Chaminal and and	 Safe locations of vents and blow downs
Chemical exposure	 Proper sizing of relief valve and similar devices
	 Catch pots for capturing any leaks during maintenance
• Solvent handling	 Rigorous operating procedures including mandatory usage of Personal Protection Equipment (PPE)
Solvent storage (regulatory	OSHA and EDA regulated chemicals with thrashold
requirements)	 OSTIA and DFA regulated chemicals with difestiond storage volume for process safety management
requirements)	checked. Confirmed solvent is not part of the clossified
	chemicals list with threshold volume
	chemicals list with uneshold volume.

Task 3: Permitting Strategy

Illinois EPA: air and water

	Air	Wa	ter
Permit Type	Construction	Construction Storm Water	Water Pollution Control
Agency	Illinois EPA	Illinois EPA	Illinois EPA
Time for Processing	6-9 months	3-5 months prior to construction	90 days
Duration	Valid for 12 months of construction, with possible extension	N/A	N/A
Operation	Covered under construction permit	Covered under construction permit	N/A
Fees	Up to \$10,000	\$250-\$750	TBD
Issues	Increased utilization; stakeholder concerns	Stakeholder concerns	TBD

Task 3: Permitting Strategy

UCSD: Local sanitary district

Permit	Connection Permit
Agency	Urbana & Champaign Sanitary District (UCSD)
Time for Processing	Up to 1 month after IEPA Water Pollution Control Permit
Operation	N/A
Fees	 Connection Fee: \$325/100 gallons* Interceptor Cost Recovery Fee: \$325/100 gallons* Base user Fee: \$0.6042/100 cf + U ser Surcharge – pretreatment credit (monthly charge based on actual volume and quality of discharge
Issues:	UCSD concerned about organic contaminants, heavy metals, ammonia
* anticipated May 2017 rate	

Task 2: Process Performance and Cost Summary 550 MW

Utilizing Illinois No. 6 Coal

Table 4. Process performance and cost summary for DOE/NETL cases compared to Linde-BASF technologies				
Parameter	NETL Case 11	NETL Case 12	Linde Case LB1	Linde Case SIH
Scenario	No capture	CO2 Capture with MEA	CO2 Capture with OASE [®] blue	CO ₂ Capture with OA SE [®] blue and SIH
Net power output (MWe)	550	550	550	550
Gross power output (MWe)	580.3	662.8	638.9	637.6
Coal flow rate (tonne/hr)	186	257	236	232
Net HHV plant efficiency (%)	39.3%	28.4%	30.9%	31.4%
Total overnight cost (\$2011)	1,348	2,415	1,994	1,959
Cost of captured CO ₂ with TS&M (\$/MT)	N/A	67	52	50
Cost of captured CO ₂ without TS&M (\$/MT)	N/A	57	42	40
COE (mills/kWh) with TS&M cost included	81.0	147.3	128.5	126.5

LB1 - Linde-BASF PCC plant incorporating BASF's OASE[®] blue aqueous amine-based solvent SIH - New Linde-BASF PCC plant incorporating the same BASF OASE[®] blue solvent featuring an advanced stripper inter-stage heater design

Plans for Future Testing/ Development/ Commercialization

PHASE III AND PROGRESS TOWARDS MARKET FORMATION

Phase III: Center for CO₂ Utilization

Forming center to address market needs

- Goal: Bring together university researchers and industry partners to examine large scale pilots to UTILIZE the captured CO₂
- Looking for partners throughout the value chain, i.e. CO₂ users and CO₂ generators
- Looking for international partners willing to test large scale systems and share information
- Will include educational and workforce development components
- Developing research thrust areas now

Regional & Global Test Bed for CCUS

Concentration of natural resources and intellectual capital

ACKNOWLEDGEMENTS

Name	Organization
Bruce W Lani	National Energy Technology Laboratory / US Department of Energy
Yongqi Lu, Vinod Patel, Hong Lu, Sallie Greenberg, Randy Locke, Deb Jacobson, Gary Miller	Prairie Research Institute / University of Illinois
Michael Larson, David Wilcoxen, Richard Rundus, Tracy Malvestuto	Abbott Power Plant / University of Illinois
Krish Krishnamurthy, Makini Byron, Joseph Naumovitz, Torsten Stoffregen, Ali Jangi, Andy Poplin	Linde
Sean Rigby	BASF
David Guth, Steve Bennett	Affiliated Engineers Inc.
Steve Davis, John Lowrey	Association of Illinois Electric Cooperatives

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0026588

